
LATEX: A Brief Introduction

Andrew Q. Philips∗

September 12, 2019

∗Assistant Professor, Department of Political Science, University of Colorado at Boulder, UCB 333,
Boulder, CO 80309-0333. andrew.philips@colorado.edu. www.andyphilips.com. Earlier versions of this
paper came from the political science graduate student “Bootcamp” course held at Texas A&M University
in 2015 and 2016.

mailto:andrew.philips@colorado.edu
http://www.andyphilips.com/

Contents

1 Introduction 2

2 Creating your First LATEX Document 4
2.1 Downloading LATEX . 4
2.2 Preamble and Packages . 6
2.3 Starting the Document . 8
2.4 Sections, Subsections, and Sub-Subsections 10
2.5 Itemize and Enumerate . 11
2.6 Typesetting . 13

3 Math and Symbols in LATEX 14
3.1 Referencing . 15
3.2 Subscripts . 16
3.3 Fractions . 17
3.4 Greek Symbols . 18
3.5 Equations in the Text . 19
3.6 Symbols that are Off-Limits . 21

4 Inserting Tables and Figures 21
4.1 Figures . 21
4.2 Advanced Figures and Tips . 23
4.3 Tables . 26

5 Bibliographies 27

6 Beamer 32

7 CVs 35

8 Other ‘TeX’ Languages 36

9 Resources 36
9.1 Documents Included in this Introduction 37

© Andrew Q. Philips 2015-2019 1

1 Introduction

This paper is designed to introduce LATEX, a typesetting program that can greatly ease

production of academic articles, presentation slides, and many other applications. LATEX

(pronounced “lay-tech” or “lah-tech”) has grown in use from its creation in 1985, and is

already very popular in academia. LATEX does have a fairly steep learning curve, but it

is well worth knowing. In fact, once you create your own basic template, the start-up

costs diminish substantially. The purpose of this paper is to show you the capabilities of

LATEX—from there, you can find vast amounts of help documentation online. This is a

quick overview that you may find helpful to revisit if you come upon this problem in your

own work (for instance, making a table or needing to create a list of references).

LATEX differs from Microsoft Word in many ways. The largest is the user-interface. In

Word you see the end result as you type and change the formatting—such a text compiler

is known as a WYSWYG (What You See is What You Get). In LATEX on the other hand,

the user types directly into a panel similar to notepad, not worrying about formatting

or appearance. Instead, preferences are programmed as commands that can change the

appearance. Think of it as similar to writing in a R script or Stata .do file; you type the

commands in the script, but you need to “run” the file in order to see the output in the

results window.

For some examples of the capabilities of LATEX, I might desire bold fonts, colors, or

huge fonts in my text—and no button is needed for changing this formatting.

LATEX even works with bibliography packages in order to compile the citations used in

your papers using a painless process. If you have ever tried to do this in Word, you know

it can be frustrating.

There are many other things that make LATEX ideal over WYSWYGs. Kerning, or

the spacing of combinations of letters that become forced apart due to their shape (e.g.,

AV, AY, AT, PA,...) is performed automatically in LATEX but not in MS Word by default.

LATEX also creates “real” capitals (capitals are a different type shape rather than just re-

sized), and provides the ability to use characters from other languages rather easily (e.g. ô ,

© Andrew Q. Philips 2015-2019 2

á, ç, å). Given that you may work with and cite researchers with these special characters

in their names, this is a big help. Mathematical symbols are incredibly common, and

it is very easy to write characters like δ , ∆, or ε with LATEX. It also has an advanced

algorithm for dealing with white-space and line breaks, has lots of compatible fonts, and

a substantial community of users who help each other online.1 Moreover, figures, tables

and equations are auto-updated as you add/remove them and fit ‘naturally’ in the text;

if you tried to do this in Word you may have experienced something like Figure 1.

Figure 1: Parkour in Word

The best part about LATEX is it is free. Anyone can download it from the main website:

http://latex-project.org/. In addition, there are copious amounts of help online; often,

the only troubleshooting you need to know is the right search term to type into Google!

LATEX is not without critiques. As discussed above, the start-up costs are quite high
1Some benefits of LATEX over WYSWYG’s can be found at http://nitens.org/taraborelli/latex.

© Andrew Q. Philips 2015-2019 3

http://latex-project.org/
http://nitens.org/taraborelli/latex

compared to WYSWYG editors. Moreover, experimental evidence suggests that even

expert LATEX users have higher error rates and are able to write less text in a given

amount of time than novice Word users (Knauff and Nejasmic 2014).2 However, LATEX

users report much higher levels of satisfaction with their typesetting package than Word

users. Equations can be written faster in LATEX. In addition, once you have constructed

a particular template (e.g. for a document, table, or figure), all you really need to do is

copy and paste.

Given that many of your coauthors (e.g., professors, advanced graduate students) will

use LATEX—and some might even require that you use it—I would suggest taking the

time to learn it. I write nearly all my syllabi, papers and presentations using LATEX. It is

better to take the time to learn this early in grad school so you can take full advantage of

it. It can even help with fairly complicated series of documents that need to be compiled

together, like books or dissertations.

The rest of this document proceeds as follows. We will first discuss basic template

setup and typesetting. Next, we will go over the maths capabilities in LATEX. Then we

will discuss inserting tables and figures. We will cover bibliographies next. Finally, we

will discuss Beamer, which is akin to the LATEX version of Microsoft PowerPoint.

2 Creating your First LATEX Document

2.1 Downloading LATEX

As we will discuss below, there are essentially three components needed to run any TEX

on your computer; (1). a TEX distribution, (2). an application needed to compile and edit

documents in TEX, and (3). packages needed to customize your document.3

If it is not already on your computer, TEX must be downloaded from online. The
2This study was not without its critiques. For a good summary, see here.
3These will need to be updated occasionally. Applications can be updated via the application them-

selves. Packages can be updated, but this differs slightly based on your operating system (see here for
more details). The large TEX distribution itself only gets a major update once a year, and needs to be
updated by re-downloading the entire distribution as described above.

© Andrew Q. Philips 2015-2019 4

http://www.nature.com/news/word-processing-war-flares-up-on-social-media-1.16669
https://tex.stackexchange.com/questions/55437/how-do-i-update-my-tex-distribution

easiest way to obtain it is by going to the core website http://latex-project.org/, and

clicking on “Obtaining Latex”. If you have a Mac, click on the MacTeX link. This brings

you to the MacTeX website, where you need to download the most current distribution.

This installs a number of programs on your computer under a TeX folder in Applications.

The file is quite big and can take some time to download.

If you have a Windows computer, you will need to install proTeXt, which is based off

of MiKTeX, and available here. Then you can run the setup.exe extension to install it to

your computer.

You’ll also need to have an application needed to compile and edit documents (step 2

above). If you have Windows, you might try the following:

• TeXstudio is a free open source application: http://texstudio.sourceforge.net/

• TeXworks is another common free open source application that many prefer for its

simplicity: http://www.tug.org/texworks/

• WinEdt is a paid application

• There are a number of new online editors where you don’t have to actually install

TEX on your own computer, and you can live-update and collaborate with others

(the latter of which you typically have to pay for), for example, using ShareLaTeX

or Overleaf

• If you’re a hard-core text/code editor user (Emacs, Vim, Sublime Text, Visual

Studio, TextMate...), many of these apps can compile TEX code as well.

If you have a Mac:

• TeXstudio is a free open source application: http://texstudio.sourceforge.net/

• TeXworks is another common free open source application that many prefer for its

simplicity: http://www.tug.org/texworks/

• I write nearly all of my own TEX on Texpad, which is a paid (≈ $25) application.

© Andrew Q. Philips 2015-2019 5

http://latex-project.org/
http://www.tug.org/protext/
http://texstudio.sourceforge.net/
http://www.tug.org/texworks/
http://texstudio.sourceforge.net/
http://www.tug.org/texworks/

• If you’re a hard-core text/code editor user (Emacs, Vim, Sublime Text, Visual

Studio, TextMate...), many of these apps can compile TEX code as well.

Below, we’ll stick with TeXworks since it’s simple and works on everyone’s computers.

2.2 Preamble and Packages

Now that we have LATEX installed and opened up a blank window, we can create our

first document. Unlike Word, you need define a number of things in a preamble that

tells LATEX how you want your document to look. This is most commonly done using

the \usepackage{} command. Similar to R, we need to load packages in order for the

typesetting engine to use them.

Here is how our preamble will appear (note: anything in this handout that appears as

Courier font sandwiched between two horizontal lines—such as the text below—is what I

actually typed in LATEX):

%

% A simple LaTeX template designed for the Political Science

% Graduate Student Programming ‘‘Bootcamp”

% Designed by: Andrew Q. Philips

%

% ------- Create Preamble ------------

\documentclass [12pt]{article}

\usepackage[a4paper]{geometry}

\usepackage{amsmath, amsthm, amssymb, amsfonts}

\usepackage{graphicx,epsfig}

\usepackage{booktabs}

\usepackage{pslatex}

\usepackage{caption}

\usepackage{setspace}

© Andrew Q. Philips 2015-2019 6

\usepackage{hyperref}

\usepackage{multicol, multirow}

What do all these things do? Here we go:

• the % is LATEX’s version of commenting out a line. Anything after the % will not

be read by the text compiler; this is an easy way to add notes or to say what a

particular package does. In my typesetting package, this appears in red, which

makes it easy to spot.

• \documentclass [12pt]{article} says we want an “article” style with 12 point font.

This command is always required. Unless you’re creating a presentation or writing

a book, article is the most common style.

• \usepackage[a4paper]{geometry} defines the type of paper we want using the geometry

package. Changing this would change the margins.

• \usepackage{amsmath, amsthm, amssymb, amsfonts} is a suite of math packages

that let us use the align environment to write equations, and other helpful math

things such as symbols. We will go over this in the “Math and Symbols in LATEX”

section.

• We need the \usepackage{graphicx,epsfig} packages to insert figures into our document

of various sorts.

• \usepackage{booktabs} is needed to produce tables that are not ugly (i.e. it gets

rid of vertical lines).

• \usepackage{pslatex} lets us use the Times New Roman font.

• \usepackage{caption} lets us label figures.

• \usepackage{setspace} lets us use double-spacing and single-spacing.

© Andrew Q. Philips 2015-2019 7

• \usepackage{hyperref} lets us create hyperlink references that you can click on to

take you to a website. For example, clicking on this link brings you to my website.

• \usepackage{multicol} gives us the multi-column and multi-row environment which

is helpful for tables.

This is only a small sample of the packages available to you. But these ones are probably

the most important. Typically I just copy and paste one of my existing preambles when

creating a new document. As such, it has gotten to be rather large; I have about

30 packages and 15 custom commands. This typically does not present any problems.

However, there are times when LATEX will not compile because two packages do not work

well with one another. So in general, pursuing the “Occam’s razor” approach to packages

is good practice. If you don’t know what a package is doing, you may not need it. Rather

than deleting it though, you should comment it out using %. I also always try to add a

comment after the \usepackage command that tells be a bit about what the particular

package is doing.

2.3 Starting the Document

Now that we have the preamble set up, all we have left to do is create the title/author page.

This part goes in the preamble, just below what we typed above. Here is a (somewhat

simplified) version of what I did for this paper:

\singlespace

\title{\textbf{My Title: A Brief Introduction}}

\author{Andrew Q.\ Philips\footnote{Assistant Professor,

Department of Political Science, CU Boulder.}}

\date{{\normalsize \today}}

© Andrew Q. Philips 2015-2019 8

http://www.andyphilips.com

We first say we want single-spacing for our title and author details by using \singlespace.

Next, we create our title in the \title{ } environment. I wanted a bold text, so I wrapped

my title in \textbf{ }. In general, you perform operations (e.g., bold, italicize, color) on

text by issuing a command with a backslash and then wrapping the desired text in curly

brackets: \command{ }. If I had wanted italics, I could of used the \emph{ } command

instead.

Next, I type my name under \author{ } section. Note how I use a backslash after the

Q., this is so LATEX understands this is not the end of a sentence and so does not include

additional space after the “.” (it automatically assumes a “.” is the end of a sentence

unless you tell it otherwise). Immediately after my name (but before we close the author

bracket) we add the command to produce a footnote. Moving ahead, anything that we

put between \footnote{ } in our document gets put in a footnote at the bottom of the

page.4 Last, we say that we would like the date shown, and LATEX knows today’s date if

we type \today. We asked for this in \normalsize, which is one of the font sizes.

Next we start the document by the following commands:

\begin{document}

\maketitle

\newpage

\tableofcontents

\doublespace

\newpage

\section{Introduction}

Here is where we start typing.....

Here is more typing.

\end{document}
4For instance, this is a footnote.

© Andrew Q. Philips 2015-2019 9

All documents start with \begin{document} and must conclude with \end{document}.

Next we make the title we just created using \maketitle. Then on a new page (by using

the \newpage command) we generate the table of contents. Not all papers have a table of

contents, so you could just comment this out with % if you would like. Next we declare

a double-space environment, and start a new page. Last, we give the beginning of our

paper a large section title called “Introduction”. Then we start typing our paper. The last

thing we need to do is close our paper with the \end{document} command. Similar to

all documents starting with \begin{document}, all must end with \end{document}. In

fact, we could type after \end{document} and none of the text would get compiled into

the document.

If all of this above seems complicated, it’s because it is. Remember that we typically

never need to change the preamble other than small text changes (names, titles). Structuring

the main body of the text should make much more sense, and it will be where you spend

most of your time writing.

2.4 Sections, Subsections, and Sub-Subsections

As shown in the last section, we defined a new section by using the command \section{ }.

We can create a smaller title nested within section by typing \subsection{ }, and the

smallest title is \subsubsection{ }. Note that the default is to number the section,

subsections and subsubsections (as shown in this paper). This is nice because if we make

a table of contents, LATEX will hyperlink us to that spot in the text if we click on the

section.5 However, if we wanted to not have these numbers, we would type \section*{ },

\subsection*{ }, or \subsubsection*{ }. The asterisks are LATEX’s way of knowing to not

show the numbered sections.
5This can also be done with external links as well as citations in the text.

© Andrew Q. Philips 2015-2019 10

2.5 Itemize and Enumerate

Lists (i.e. bulletpoints) are sometimes important when creating documents. In LATEX

these are called “itemize” lists. We can create itemized lists the way I just did by using

the itemize command. For example, typing the following in my TeX document:

\begin{itemize}

\item Here is one item

\item Here is another item

\item Here is another item

\item Here is another item

\end{itemize}

produces the following list:

• Here is one item

• Here is another item

• Here is another item

• Here is another item

We use \begin{itemize} to start the itemize environment. For each new bullet-point,

we need to type \item and then our text. At the end we stop the environment by

typing \end{itemize}. If we wanted to create numbers, we would replace the itemize

with enumerate:

\begin{enumerate}

\item Here is one item

\item Here is another item

© Andrew Q. Philips 2015-2019 11

\item Here is another item

\item Here is another item

\end{enumerate}

And the result would be numbered:

1. Here is one item

2. Here is another item

3. Here is another item

4. Here is another item

We can also nest enumerates or itemizes within each other—for instance typing:

\begin{enumerate}

\item Here is one item

\begin{enumerate}

\item This item is nested!

\item This item is nested!

\begin{enumerate}

\item This item is double-nested

\end{enumerate}

\end{enumerate}

\item Here is another item

\item Here is another item

\begin{enumerate}

\item This item is nested!

\item This item is nested!

\begin{enumerate}

© Andrew Q. Philips 2015-2019 12

\item This item is double-nested

\end{enumerate}

\end{enumerate}

\item Here is another item

\end{enumerate}

Gives us output that appears as the following:

1. Here is one item

(a) This item is nested!

(b) This item is nested!

i. This item is double-nested

2. Here is another item

3. Here is another item

(a) This item is nested!

(b) This item is nested!

i. This item is double-nested

4. Here is another item

As is clear from this example, it can start to get pretty confusing where itemizes and

enumerates begin and end. Therefore (as with any coding program), it is a good idea to

tab nested commands to keep them organized.

2.6 Typesetting

After we have set the preamble and written our text, the next step is to compile our LATEX

file into a PDF. This is done using the typeset command up in the menu bar. Remember

© Andrew Q. Philips 2015-2019 13

that we may need to press compile a few times in order to get all the equation, figure,

and table numbers to compile properly. If you are typesetting for the first time, this may

take awhile—LATEX needs to read all of the graphs and preamble commands. Typically,

all typesetting programs have a console that shows what it is thinking and will let you

know if it gets stuck on something and fails to compile. If you are having trouble, make

sure that the compiling engine is set to pdfLaTeX.

Unfortunately, the error message you get if your file does not compile is not typically

very helpful. In my experience, if it is hard to diagnose where the error is occurring,

sometimes it helps to remove all the text and add it half of it back in, see if it compiles,

add half of the remaining text back in, compile,...etc. This way you can isolate out the

trouble paragraph or section. By far, the most common error that I have seen is forgetting

to add a closed curly bracket.

3 Math and Symbols in LATEX

One of the biggest advantages of LATEX is its ability to write complex mathematical

formulas relatively easily. In this section we will go over some of the most common ones

as well as how to present equations. Consider a relatively simple equation:

E = mc2 (1)

\begin{align}

E=mc^{2}

\end{align}

How did I make this? We first used the “align” environment to tell LATEX that we had

© Andrew Q. Philips 2015-2019 14

an equation.6 We then typed the equation, using the carrot symbol to get the superscript.

Anything that we put inside the curly brackets after the carrot gets superscripted, and

anything left outside does not. By default, LATEX will assume the first character after a

superscript or subscript is meant to be superscripted/subscripted, but if you want more

characters you will need to use the curly brackets. For instance, I can make the 2 turn

into (2+5x) through the following:

E = mc(2+5x)+1 (2)

\begin{align}

E=mc^{(2+5x)}+1

\end{align}

3.1 Referencing

Notice also how LATEX automatically numbers our equations. We can reference these

equation numbers by using the “label” and then “ref” commands as follows:

E = mc(2+5x)+1 (3)

\begin{align}\label{eq:myfirstequation}

E=mc^{(2+5x)}+1

\end{align}

6Note that we could have used the “equation” environment instead of align. To the best of my
knowledge, the only difference is that the equation environment allows you to break up the equation if it
runs across the entire page, although see this link for a debate.

© Andrew Q. Philips 2015-2019 15

http://tex.stackexchange.com/questions/321/align-vs-equation

Now anytime we type:

\ref{eq:myfirstequation}

in our text (not in the align environment) we get a label for Equation 3. This is

live-updated; if we were to delete an equation or move it somewhere else, LATEX will

recognize that the order numbering has changed and update the numbering.7 This is a

huge time-saver, especially in long papers, since you no longer have to go through and

change equation numbers in the text. We just have to make sure that each new equation

gets a new label, so having a labeling system like eq1, eq2, eq3...is helpful.

Note too that all equations are referenced by \ref{eq:something} . The eq: part is

necessary to let the program know this is an equation, but the “something” part can be

any label you want to give it. Below we will see that labeling figures or tables works in

the same way, but instead of eq: we need fig: or tab:, respectively.

3.2 Subscripts

As with superscripts, a subscript command let the typesetting program know you want

everything within the following brackets after the underscore in subscripts. It looks like

the following:

Et = mtct (4)

\begin{align}\label{eq:mysecondequation}

E_{t}=m_{t}c_{t}

\end{align}
7Sometimes if your paper has not compiled in some time, or you had an error last time, you will get

?? instead of a number. Just keep re-compiling and it will take care of itself.

© Andrew Q. Philips 2015-2019 16

See how everything in Equation 4 has been subscripted by t. We could always combine

both super- and subscripts:

Et = mtc
(2+5x)
t (5)

\begin{align}

E_{t}=m_{t}c_{t}^{(2+5x)}

\end{align}

Note that the order of the carrot and underscore after c does not matter, but the

curly bracket rule is still in place; all brackets must be closed and everything within

the bracket gets used by the preceding command. And, all superscript commands and

subscript commands should come right after the letter or symbol (e.g., no m _{t}).

3.3 Fractions

Fractions are easy to create. The first set of curly brackets is the numerator, the

second, the denominator:

\begin{align}

\frac{1}{2}

\end{align}

© Andrew Q. Philips 2015-2019 17

will produce the fraction:

1
2

(6)

As with the superscripts and subscripts, we can add more complicated commands into

the numerator or denominator, just remember those curly brackets:

\begin{align}

\frac{\frac{1}{3}}{2^{x}}

\end{align}

1
3

2x (7)

3.4 Greek Symbols

In scientific writing, symbols (commonly Greek) are often used. They are relatively simple

to add, as long as you remember the name. Capitalizing the Greek letter will call its

upper-case Greek counterpart, if applicable. For instance:

α +β + γ +δ + ε +µ +θ +∆+Σ (8)

\begin{align}

\alpha + \beta + \gamma + \delta + \epsilon + \mu + \theta + \Delta + \Sigma

\end{align}

© Andrew Q. Philips 2015-2019 18

are some of the most common greek letters. Note how Delta is capitalized in its second

occurrence in order to get the upper-case version. We can add things like superscripts

and subscripts directly to these symbols, e.g., βs.

A quick Google search can help you find all the others, as well as other symbols to

use in LATEX—like ←, ̸=, ∀, or ∞. For instance, some helpful websites for symbols are:

• https://www.sharelatex.com/learn/List_of_Greek_letters_and_math_symbols

• http://omega.albany.edu:8008/Symbols.html

Depending on your typesetting distribution, you may even have hotkeys that you can

press to include these symbols right into your text (i.e. MiKTeX in Windows). If not,

you will have to look up/remember these symbols each time. Thankfully, many of these

commands are intuitive...i.e. the \Delta command makes a ∆. Note that we can include

these in fractions, add superscripts/subscripts to them, and so on—in other words, Greek

letters can be treated just like any other character in the equation.

3.5 Equations in the Text

So far we have given each equation a new line and its own number using the align

environment. Other times we may want to reference or create a specific math symbol

or equation in the text, such as β , or c(2+5x). To do so, we enclose them by using the $:

For instance, the sentence such as β , or c(2+5x) can be written as:

For instance, the sentence such as β, or $c^{(2+5x)}$ can be written as:

Failing to add the $ or curly brackets to either side is one of the most common reasons

why LATEX fails to compile (it will issue an error in the console like “missing $ inserted”),

so be sure to write these correctly.

© Andrew Q. Philips 2015-2019 19

https://www.sharelatex.com/learn/List_of_Greek_letters_and_math_symbols
http://omega.albany.edu:8008/Symbols.html

To conclude, LATEX makes it really easy to write complex mathematical formulas like:

Zit = αit +δXit +
γX + e3X+ε

(1−
√

c2
it)

(9)

Just remember to keep track of those curly brackets:

\begin{align}

Z_{it} = \alpha_{it} + \delta X_{it} + \frac{\gamma X +

e^{3X + \epsilon}}{(1-\sqrt{c_{it}^{2}})}

\end{align}

Or, a complex example from one of my lectures. Here, we use the split command to

split this equation across multiple lines:

ln L(µ,σ2|y,kIl,kIu) = ∑
yi /∈I

ln
(

σ−1ϕ
(

yi−µ
σ

))
+

∑
yi∈I

ln
(

Φ
(

kIu−µ
σ

)
−Φ

(
kIl−µ

σ

)) (10)

\begin{equation}

\begin{split}

\text{ln}\ L(\mu,\sigma^2| y,k_{Il},k_{Iu}) = & \sum_{y_i\notin\mathcal{I}}\text{ln}

\Bigg(\sigma^{-1}\phi\left(\frac{y_i-\mu}{\sigma} \right) \Bigg) +\\

& \sum_{y_i\in\mathcal{I}} \text{ln} \Bigg(\Phi\left(\frac{k_{Iu}-\mu}{\sigma}\right)-

\Phi \left(\frac{k_{Il}-\mu}{\sigma}\right)\Bigg)

\end{split}

\end{equation}

© Andrew Q. Philips 2015-2019 20

The easiest way to find the specific name to write complex symbols or commands (like

writing a fraction or square root) is to search online for it. Although all of the brackets

and parentheses may look daunting, they follow a set of simple rules that make writing

mathematical formulae much easier than in other word processors.

3.6 Symbols that are Off-Limits

You may have noticed how important the \ is to LATEX. If we try to put one in

our document by itself, it may not compile.8 The _ (underscore), the $, the %, the ^,

the &, and the #, if included, won’t compile. That is because these are key parts of

the LATEX language. For instance, as we saw above, the dollar sign was used to start

and end an equation in the text. If you still want to use these special characters (called

macro-parameter characters in LATEX), you will have to put a backslash, \, in order to use

them (i.e. \$). In my experience, writing an illegal symbol in the text one of the other

most common reasons why LATEX fails to compile.

4 Inserting Tables and Figures

In the previous section we saw how to insert equations into our paper. In this section we

will discuss how to add tables and figures into LATEX. This is particularly important since

much of quantitative social science involves presenting results through the use of tables

and figures.

4.1 Figures

Inserting a figure into LATEX is relatively straightforward. Assume we already created and

saved a figure using R or Stata. A good extension to use is as a PDF.9 Also make sure
8Technically, if it precedes a blank space it will compile, but if it abuts a letter or something it might

not.
9There seems to be some contention as to the best type of file extension to use for graphics. I found

a forum that found that, “For photos, screenshots and such bitmap graphics, you could use their native
format (to preserve quality) if it’s jpeg or png. Otherwise convert those pictures to png or at least to

© Andrew Q. Philips 2015-2019 21

that we have the packages \usepackage{graphicx,caption} in the preamble. We can then

add a figure to our document. For instance, Figure 2 shows a bar graph I made for one

of my papers. Here is how it is added into my LATEX document:

0

10

20

30

40

50

P
e
rc

e
n
ta

g
e
 o

f
R

e
s
p
o
n
d
e
n
ts

No Yes Maybe/Don’t Know

Do You Approve of Land Grabs?

Figure 2: This is Only an Example Figure

\begin{figure}[htpb]\centering

{\includegraphics[width=150mm,height=105mm]{myfigure.pdf}}

\caption{This is Only an Example Figure}

\label{fig:myfirstfigure}

\end{figure}

We first have to call the figure by using \begin{figure}. The [htpb] is a LATEX command

lossless jpg...For drawings, plots and diagrams you better use a vector image format, because it can be
scaled without quality loss. Possible vector formats are pdf and ps.” Keep in mind that not all extensions
work in all compiling types. I think that in general, the best to use are .pdf or .eps.

© Andrew Q. Philips 2015-2019 22

that lets the graphs float around in order to fit them on the page the best.10 Next, we

tell LATEX to center the figure using \centering. Then, we (inside a set of brackets)

type \includegraphics to define the pdf we want to use. Within square brackets we type

the command [width=150mm,height=105mm]; this defines the width and height of the

figure. Depending on the figure, you may have to tweak this a bit to make the graph

look good.11 Next we specify the filename within another set of curly brackets, this one

is called “myfigure.pdf”. Then we label the figure using \label{fig:myfirstfigure} so that

we can reference it later. Last, we use \end{figure} to end the figure creation.

One more note; we called the number for Figure 2 using \ref{fig:myfirstfigure} in the

text. So it is the same as using \ref for the equations as we saw in the previous section,

only now fig comes before the colon instead of eq.

4.2 Advanced Figures and Tips

Sometimes getting the figure width right on the page can be difficult. A quick fix is

to use width=0.9\linewidth in the size of the figure section, which makes the width 90

percent of the width of the lines on the page. This is shown in Figure 3. The nice part

about specifying only the width is that the height auto-sizes itself, so there is little risk

of distorting the figure. I tend to use this command most often when adding figures.

\begin{figure}[htpb]\centering

{\includegraphics[width=0.9\linewidth]{myfigure.pdf}}

\caption{This is Another Example Figure}

\label{fig:myotherfigure}

\end{figure}

10There are others, like [H], that force compile a figure at a certain point in the text. [htpb] is superior,
in my opinion, since it lets the figure “float” to the most natural break in the text.

11Many books on the graphical presentation of results define the “golden” ratio as a 1.6 to 1 ratio
between width and height, respectively. Typically though trial and error works pretty well.

© Andrew Q. Philips 2015-2019 23

0

10

20

30

40

50

P
e

rc
e
n

ta
g

e
 o

f
R

e
s
p
o

n
d
e

n
ts

No Yes Maybe/Don’t Know

Do You Approve of Land Grabs?

Figure 3: This is Another Example Figure

We may also want to combine figures together. Although you can do this in both

Stata and R, by combining figures in LATEX you can reference each individual figure

(labeled as 1a, 1b, 1c...), as well as the overall figure number. We first need to add

\usepackage{subcaption} to the preamble. Then, typing the following

\begin{figure}[htpb]

\begin{subfigure}{.5\textwidth}

\centering

\includegraphics[width=1\linewidth]{myfigure.pdf}

\caption{This is the First Figure Caption}

\label{fig:combinedfig1}

\end{subfigure}% <-- % is IMPORTANT!

\begin{subfigure}{.5\textwidth}

\centering

\includegraphics[width=1\linewidth]{mysecondfigure.pdf}

© Andrew Q. Philips 2015-2019 24

\caption{This is the Second Figure Caption}

\label{fig:combinedfig2}

\end{subfigure}

\caption{This Caption Labels the Entire Figure}

\label{fig:overallfigurelabel}

\end{figure}

produces Figure 4. We start with \begin{figure}[htpb]. Then we use the command

\begin{subfigure}{.5\textwidth} to start one of the subfigures, giving it 50 percent of the

total width of the figure. Next we add the figure information just like in a regular figure.

It is very important that we put a % after we end the first subfigure. I am not sure why,

but without it the figures will be on top of each other rather than next to each other. In

the second half we create another subfigure. After we end the second subfigure, we add a

caption and label to the overall figure. Now we can reference individual subfigures, such

as 4a or 4b, as well as Figure 4.

0

10

20

30

40

50

P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

d
e

n
ts

No Yes Maybe/Don’t Know

Do You Approve of Land Grabs?

(a) This is the First Figure Caption

Sakurai & Menezes-Filho (2011)

0

50

100

150

200

Pr
ec

is
io

n
(1

/s
.e

.)

-.5 0 .5 1
Partial Correlation

(b) This is the Second Figure Caption

Figure 4: This Caption Labels the Entire Figure

Last, for those that would like to draw figures or schematic diagrams in LATEX, there

is a package called TikZ. This is beyond the scope of this paper (and a bit of overkill

given that most of these diagrams are easier to make in PowerPoint or Keynote), but if

you want to learn more you should check out this link.

© Andrew Q. Philips 2015-2019 25

https://en.wikibooks.org/wiki/LaTeX/PGF/TikZ

4.3 Tables

Tables are a bit more difficult to create by hand than most things in LATEX. Thankfully,

often we can get our statistical packages, like Stata, to do the heavy lifting for us (we saw

how to do this in Stata and R). Here is a super-basic table:

Table 1: The Title of My First Table

Column name 1 Column name 2
4.5 3.6
3.2 1.3

We create Table 1 by the following:

\begin{table}[htbp]

\caption{The Title of My First Table}

\begin{center}

\begin{tabular}{c c}

Column name 1 & Column name 2 \\\hline

4.5 & 3.6 \\

3.2 & 1.3 \\\hline

\end{tabular}

\end{center}

\label{tab:myfirsttable}

\end{table}%

As with creating figures, we first define the environment through \begin{table}[htdp],

using the [htdp] environment to let our table “float” through the pages. We then define

the \caption{}, or title. Next we start a centering environment. The next part of creating

a table is to start a \begin{tabular}{c c} environment. The c’s in curly brackets mean

that we want two columns in our table, centered. Some other possibilities include l for

© Andrew Q. Philips 2015-2019 26

left-aligned or r for right aligned. Note that if we were to expand the table—add more

columns for instance—we would need to add the correct number of columns here, each

column represented by a “c” or “l” or “r”.

After, we enter in the data for the table. Each entry in the table is separated by a &.

Note too that \\ is the command to end the line of the table, and after this command

we start a new line, which ends up being a new row in the column. Note that unlike the

number of columns, which we did have to specify in the \begin{tabular}{c c} environment,

we can just keep adding rows to the table.

At the end of the table, we use \hline to create the horizontal lines separating the

variable names. And that is it...we could make as many new rows of numbers as we

wanted. For more complicated Table functions (i.e. multiple columns, multiple rows,

slimming down columns, etc...see online help).

5 Bibliographies

One of the most difficult parts of writing an academic paper is keeping track of (and

creating) all of the citations needed. Thankfully, LATEX is pretty good at handling this. It

uses something called a BibTeX typeset to create references. Unless you are hand-writing

in authors at the end of your document (don’t do this please!), most people get some sort

of .bib file program.

What is a .bib file? It stores citation information written in a particular way using

the BibTeX language:

@article{greenwade93,

author = ”George D. Greenwade”,

title = ”The {C}omprehensive {T}ex {A}rchive {N}etwork ({CTAN})”,

year = ”1993”,

journal = ”TUGBoat”,

© Andrew Q. Philips 2015-2019 27

volume = ”14”,

number = ”3”,

pages = ”342--351”

}

If it looks clunky and confusing...it is. Thankfully, there are a number of free bibliography

tools. These programs help look up citations on places like Google Scholar, and then show

the content above via a graphical user interface (GUI). The program then saves the file

as a .bib, and then we can compile the references in our LATEX document by making calls

to the .bib file.

Graduate students and others that I know primarily use two bibliography programs:

BibDesk, or JabRef. I use BibDesk, but it is only available for Mac—JabRef is available

for all platforms since it utilizes Java. We will focus on JabRef since it is similar

cross-platform.12 First download the program and open it.13 It should look something

like Figure 5.

Next select a new BibTeX database. Then, under search click “Web search”. Select

Google Scholar and search for a name. I searched for “Anthony Downs”. Then click on

any/all relevant checkboxes of works by Downs that you want to cite, and click “OK”. A

menu pops up that shows what we added. Click “OK” again and now the main screen

will appear as in Figure 6.

Of course, sometimes we may not find an article/book we are searching for. Or we

may want to enter or change the entry. To create a new entry, click the “Plus” button.

Next, select which entry type you want (choose “Article” for this example). Then, fill

out the form that pops up with the relevant information. You should not have to fill out

entries by hand very often since most work is available on the web.
12In fact, there even appears to be a Java applet to run JabRef in your web browser.
13I had particular difficulties doing this on my Mac; after downloading the .zip file from SourceForge

and clicking on it, I got a “this package is damaged and cannot be opened” window pop up. To override
this (the package is not damaged), go to System Preferences, and under Security & Privacy change it so
that your computer allows downloaded apps from “Anywhere”.

© Andrew Q. Philips 2015-2019 28

http://jabref.sourceforge.net/

Figure 5: A Fresh JabRef

Figure 6: JabRef with One Author

© Andrew Q. Philips 2015-2019 29

At the bottom of every entry is something called a Bibtexkey. This is very important,

since it serves as a unique identifier for each entry. If you have the same Bibtexkey for

two or more entries, JabRef will complain. What is a good entry key? The default is to

list the first author and the year of publication; for instance Downs1957. In fact, if you

click the magic wand button on the menu bar, an entry key is automatically generated.

You can, of course, use whatever entry key you like, but it is probably a good idea to keep

them short and consistent.

Now we are ready to save our .bib file (the file format that JabRef and other programs

use) and put the needed author entries into LATEX. In the course materials, there is

already a .bib file named “bibliography.bib” that has a lot of citations. To cite something,

we go to the cite we want. Then we type \cite{ } into our LATEX document where we

want the citation to appear. For instance, \cite{aidt2014voting} produces a citation that

appears as: Aidt and Mooney (2014). To make this appear in both our paper and in the

references there are a number of steps:

1. First, we need to add the following lines into the preamble:

\usepackage{natbib} % need for bibtex

\setcitestyle{aysep={}} % no commas for author-year separation

\bibliographystyle{apsr}

The natbib package is required to use bibtex. The next line removes the pesky

commas that appear between the authors and years. The third line, \bibliographystyle{apsr},

is the APSR bibliography style. There are a few other bibliography styles, and based

off the journal you submit your manuscript to you may have to change this, but

these three lines should get you pretty far.

2. Second, the following needs to be added at the end of the document but before the

\end{document} line:

© Andrew Q. Philips 2015-2019 30

\newpage

\bibliography{bibliography}

The \newpage command puts the references on a new page. The \bibliography{ }

command specifies the name of the JabRef .bib file. We need to make sure that the

.bib file is in the same location as our LATEX document. We also need to make sure

that we have the correct file name.

3. We need to compile the document in both LaTeX and BibTeX. Make sure you have

saved your .bib file. Then proceed as follows:

(a) First compile LaTeX.

(b) Then compile as BibTex (you should be able to change the typesetting from

LaTeX to BibTex in your typesetting program).

(c) Now compile as LaTeX at least twice. This part is weird and sometimes appears

to take a number of BibTex→LaTeX→LaTeX combinations. You will know if

it is successful if you no longer get ? as cites.

The best part of having a .bib file is that it is rather intelligent. For instance, if an

author has more than one article in a year, the program automatically adds year-a and

year-b to the citations and references...for instance: (Philips, Rutherford and Whitten

2016a,b) was generated by \citep{philips2016dynamic,philips2016sj}. Notice how this

citation looks different. by using \citep{ }, we can get citations surrounded by parentheses.

By using a comma to separate entries, we can get multiple citations separated by a

semi-colon.

There are a number of ways to generate citations to include parentheses, page numbers,

and so on. Here are most of them:

• \citet{aidt2014voting} appears as: Aidt and Mooney (2014).

© Andrew Q. Philips 2015-2019 31

• \citep{aidt2014voting} appears as: (Aidt and Mooney 2014).

• \citep[][pp. 412]{aidt2014voting} appears as: (Aidt and Mooney 2014, pp. 412).

• \citep[e.g.][pp. 412]{aidt2014voting} appears as: (e.g. Aidt and Mooney 2014, pp.

412).

To sum up, bibliography programs such as BibTeX and JabRef greatly increase your

efficiency when creating documents. You are less likely to make mistakes when citing

authors, and can use the same .bib document so you don’t have to keep searching for

entries on Google Scholar. You can even link the actual .pdf articles to JabRef, so it

serves as a sort of “document warehouse”.

6 Beamer

Beamer, like PowerPoint, is used to make presentations. Lots of people like it because it is

very no-nonsense; no moving parts, works no matter the LATEX distribution, and, like with

documents in LATEX, you only have to set up the formatting in the preamble to have it

throughout the rest of the presentation. With a few exceptions, it is actually very similar

to LATEX. It saves the document as a .pdf, which can be read by every computer—this is

ideal since some computers may not have the capability of reading a PowerPoint .ppt, or

may have a depreciated version that cannot handle all the slide animations; in contrast

with a Beamer file you just open up the .pdf and go to slideshow mode and everything

should work perfectly.

In the course files, you should receive a simple beamer template (“CU-beamer-template”)

which I created for you. It will be helpful to go through this step-by-step.

Like LATEX, we have to first set up the preamble, starting with the required document

class:

\documentclass[mathserif,ignorenonframetext]{beamer}

© Andrew Q. Philips 2015-2019 32

In this case we ask for the beamer document class. Next we use one of the many

themes available. I put them all in, but you may want to look them up here to see how

they look. I chose \usetheme{Copenhagen} but many of them look similar.

Next we define packages just like we did when creating a document. There are a few

beamer-specific ones I added that eliminate a lot of the junk that is the default in beamer

(like slide numbers and arrows at the bottom of the slide). Then we create the CU colors

using

% --

% Define CU colors:

\definecolor{cugold}{RGB}{207,184,124}

\definecolor{cublack}{RGB}{0,0,0}

\definecolor{cudkgray}{RGB}{86,90,92}

\definecolor{cultgray}{RGB}{162,164,163}

The text below the CU colors applies it to certain parts of the Beamer file, like how

the bottom is in gold and black. Feel free to mess around with these to mix things up

a bit. While it is perfectly fine to use different colors (lots of presenters use a simple

blue theme), be careful that the colors that you choose are not too bright or too dark for

presentations. While that bright yellow you picked out may look great on your laptop, it

probably will induce headaches when it is up on the screen.

Next we create the title and author information. Again, this is very similar to the

document, except that we include a small mini-title and author information to appear at

the bottom of every slide. After, we start the document and create the title page:

\title[CU Boulder]{\textcolor{black}{Title Here}}

© Andrew Q. Philips 2015-2019 33

http://deic.uab.es/~iblanes/beamer_gallery/index_by_theme.html
http://deic.uab.es/~iblanes/beamer_gallery/index_by_theme.html

\author[\copyright\ Last Name 2017]{

Your Name Here\\ \bigskip

{\small University of Colorado Boulder} }

\date{}

\begin{document}

\frame{\titlepage}

If we were to compile the Beamer (which is still compiled in LaTeX, but just a different

document class), we should get something that looks like Figure 7.

Figure 7: The Title Page of a Beamer Presentation

We can now start creating slides. Typically they appear something like the following:

% --

\begin{frame}\frametitle{Frame title}

© Andrew Q. Philips 2015-2019 34

\begin{itemize}\setlength\itemsep{1em}

\item Here’s an item\pause

\item Here’s another

\end{itemize}

\end{frame}

% --

where the frame environment defines each slide. To create a pause (so that you will

have to click through once to see the next part) we can use the \pause command. In

addition, itemizing or enumerating are commonly done when using Beamer presentations.

Note too that we could add a table or graph right into a slide, just like we can do in

LATEX.

Last, remember that the end of the document needs the \end{document} line or else

nothing will compile. After that, we can Typeset the document and it should compile

into a .pdf that we can open and use in a slideshow format just like any other document.

To conclude, we use Beamer slides as a simple way of presenting academic work.

These documents are relatively easy to create (after you have the basic template) and

are highly compatible with LATEX. Like LATEX they excel at presenting mathematical

formulae, graphs, and tables. Other than the “frame” environments and preambles, you

write in it just as you would in LATEX.

7 CVs

LATEX is a great tool for helping you create an academic CV, since these are typically

full of formatting and indentations that are difficult to handle in WYSIWYGs. For some

online templates check out: https://www.sharelatex.com/templates/cv-or-resume or

http://www.latextemplates.com/cat/curricula-vitae.

© Andrew Q. Philips 2015-2019 35

https://www.sharelatex.com/templates/cv-or-resume
http://www.latextemplates.com/cat/curricula-vitae

8 Other ‘TeX’ Languages

Everything we have talked about so far has been done in pdfLaTeX, which is typically

the default typesetting engine (what compiles your document when you hit typeset).

However, there are a number of others that you may want to consider, depending on your

needs. Two of the most common alternatives are XeTeX and LuaTeX. XeTeX is similar to

pdfLaTeX, but allows much more flexibility in terms of fonts, mostly through the fontspec

package. Changing fonts away from the standard ones in pdfLaTeX is quite difficult, in

contrast. XeTeX also supports UTF-8 encoded input, but only provides .pdf output

(regular pdfLaTeX allows you to produce a .dvi or .ps file as well). LuaTeX is similar to

TeX but uses a different scripting language (known as “Lua”). I nearly always use XeTeX,

and sometimes pdfLaTeX. I would especially recommend XeTeX if working on a project

that needs special fonts and formatting (e.g., CV or book). ConTeXt is another engine,

but I do not know much about it. The following link has a bit more on these differences:

http://tex.stackexchange.com/questions/36/differences-between-luatex-context-and-xetex.

9 Resources

The goal of this document was to get you up and running with LATEX. We have covered

downloading and setting up the application, typesetting the document, math symbols,

and inserting tables and figures. In addition, we discussed why using a bibliography

package with LATEX is a really good idea. Last, we saw the advantages of using Beamer

to make our presentations.

While this document is a helpful overview, it is by no means a complete introduction

to LATEX. Even if you frequently run into problems, there are lots of online sources (and

fellow graduate students!) to help you out. Often, simply typing into Google something

such as, for instance, “latex footnote to endnote” gets you a good answer. Other than

the other links referenced earlier in the document, here are some other ones that I find

helpful:

© Andrew Q. Philips 2015-2019 36

http://tex.stackexchange.com/questions/36/differences-between-luatex-context-and-xetex

• At WikiBooks there is a broad overview of the capabilities and different parts of

LATEX: https://en.wikibooks.org/wiki/LaTeX.

• There is a TeX stackexchange, just like there are analogous versions for Stata and R:

http://tex.stackexchange.com/. I estimate that I answer 90 percent of my problems

using this website alone.

• There is a handy table-maker at http://www.truben.no/latex/table/ that takes

some of the difficulty out of creating tables.

• This is a really cool site that lets you draw the symbol you want to use in LATEX:

http://detexify.kirelabs.org/classify.html.

• Here is a link to more help on the main LATEX site: http://latex-project.org/guides/.

9.1 Documents Included in this Introduction

There are a number of LATEX-specific documents that have been included in the Bootcamp

course files. You should have the following:

• A .TeX document, “CU-beamer-template”, which is a template you can use to create

Beamer slides.

• A .TeX document, “simple latex template”, which is a template you can use to

create a LATEX document.

• A .bib document, “bibliography”, which has about 300 author entries, so you have

somewhere to start when building your own library.

© Andrew Q. Philips 2015-2019 37

https://en.wikibooks.org/wiki/LaTeX
http://tex.stackexchange.com/
http://www.truben.no/latex/table/
http://detexify.kirelabs.org/classify.html
http://latex-project.org/guides/

Figure 8: XKCD

References

Aidt, Toke S and Graham Mooney. 2014. “Voting suffrage and the political budget

cycle: Evidence from the London Metropolitan Boroughs 1902–1937.” Journal of public

economics 112:53–71.

Knauff, Markus and Jelica Nejasmic. 2014. “An Efficiency Comparison of Document

Preparation Systems Used in Academic Research and Development.” PloS one

9(12):e115069.

Philips, Andrew Q, Amanda Rutherford and Guy D Whitten. 2016a. “Dynamic Pie: A

Strategy for Modeling Trade-Offs in Compositional Variables over Time.” American

Journal of Political Science 60(1):268–283.

Philips, Andrew Q, Amanda Rutherford and Guy D Whitten. 2016b. “dynsimpie: A

program to examine dynamic compositional dependent variables.” Stata Journal .

© Andrew Q. Philips 2015-2019 38

	Introduction
	Creating your First LaTeX Document
	Downloading LaTeX
	Preamble and Packages
	Starting the Document
	Sections, Subsections, and Sub-Subsections
	Itemize and Enumerate
	Typesetting

	Math and Symbols in LaTeX
	Referencing
	Subscripts
	Fractions
	Greek Symbols
	Equations in the Text
	Symbols that are Off-Limits

	Inserting Tables and Figures
	Figures
	Advanced Figures and Tips
	Tables

	Bibliographies
	Beamer
	CVs
	Other `TeX' Languages
	Resources
	Documents Included in this Introduction

